On January 4th, 2018 we learned about

Fossilized microbes show surprising biodiversity from 3.4 billion years ago

Most rocks on the Earth’s surface don’t last more than 200 million years before erosion or other forces get the best of them. Sure, that’s older than any dinosaur, but it’s only a tiny slice of our planet’s 4.5-billion-year history. Thankfully, rocks and crystals from the Earth’s early days do turn up here and there, helping us understand what our planet once looked like, and even more intriguing, who first called it home. That latter point is being revealed by 3.4-billion-year-old rocks from Australia, which have been found to not only contain fossilized microorganisms, but evidence of a surprisingly diverse ecosystem at a time when our planet was just beginning to be habitable.

Combing through fossils for traces of chemistry

The fossilized microorganisms weren’t multicellular animals of course, so these ancient rocks offered no bones or organs to study. Instead, researchers studied each singled-celled organism with secondary ion mass spectroscopy (SIMS). This technology allowed researchers to compare variations of carbon atoms, or isotopes, in the fossils and surrounding stone. The ratios of carbon-12 to carbon-13 was then be used to determine how each microbe functioned when it was alive, as those isotopes will accumulate differently in different metabolic conditions.

Differences in these early prokaryotes‘ metabolisms suggest that even 3.4 billion years ago, life had evolved a few different ecological niches. One group was apparently a methane producer, while another powered its metabolism by consuming methane. A third fossil showed signs of primitive photosynthesis that, unlike today’s plants, didn’t produce oxygen (which would have been toxic to these organisms). A microbe from an earlier study rounds out the bunch, as it relied on sulfur as its primary food-source.

Is life less unusual than we assumed?

This version of Earth certainly wouldn’t be habitable by today’s standards, but it’s an amazing degree of sophistication for a planet that had probably only had solid ground for 600 million years. This suggests that either the Earth was intensely lucky at an early age, or that life may be a bit more tenacious than we once thought. If it’s the latter, researchers suspect that this aggressive microbial timeline may have played out on other planets as well. It wouldn’t mean that other planets have the same complex organisms we do here, but that getting some microbes growing in the first place isn’t such a long-shot.

Until we get probes out to places like Europa, Titan or Enceladus, the best location to find extraterrestrial microbes may be Mars. This wouldn’t be to find microbes alive today, but to look for traces of similar fossils from the days when Mars was likely a more habitable planet.

Source: